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Abstract
Propagation of heat waves in rigid bodies is investigated. The originality of the approach is that
it rests on a revisited version of extended irreversible thermodynamics. In comparison with
earlier developments, two innovations are proposed. First, we depart from the linear approach,
best illustrated by Cattaneo’s relation, to explore the non-linear regime. Second, the extra
variables are no longer the usual dissipative fluxes, but renormalized expressions of the fluxes,
in order to include the specific material properties of the systems under study. The present
model is particularly well suited for studying heat transport at low temperatures in dielectric
crystals.

1. Introduction

In this work, we propose a non-linear model of heat
transport in rigid conductors based on extended irreversible
thermodynamics (EIT), a non-equilibrium thermodynamic
formalism developed two decades ago among others by Jou,
Casas-Vázquez and Lebon [1] and Müller and Ruggeri [2].
The basic idea underlying EIT is to upgrade the physical fluxes
of energy, matter and momentum to the status of independent
variables at the same level as the classical variables like energy,
mass, and momentum. The motivations for this selection is that
these fluxes are typically non-equilibrium quantities vanishing
at equilibrium. This choice is rather natural because the only
accessibility to a system is through its boundaries. Moreover,
in high frequencies processes like ultrasound propagation, or
systems with large relaxation times like polymers, the fluxes
lose their status of fast and negligible variables and must be
included in the space of state variables. This choice finds also
its roots in the kinetic theory of gases, wherein it is frequent
to select the higher moments of the velocity distribution as
variables as suggested by Grad’s thirteen-moment theory [3].
An important problem is to determine the time evolution

3 Author to whom any correspondence should be addressed.

equations of the new flux variables. In the problem of heat
conduction in rigid bodies, the extra variable is selected as the
heat flux vector q. The simplest evolution equation for q is
given by

τ∂t q = −λ∇T − q, (1)

which is the celebrated Cattaneo’s relaxation relation [4], T
designating the temperature, λ the heat conductivity and τ the
relaxation time. For negligible values of τ , expression (1)
reduces to Fourier’s law q = −λ∇T . The term in τ

is responsible for inertial effects and allows to circumvent
the paradox associated with Fourier’s law, i.e. that heat will
be felt instantaneously and everywhere in space after the
application of a temperature gradient. Cattaneo’s relation is
also compatible with experiences in superfluids like He II
exhibiting the property that heat propagates as a true wave,
called the second sound.

However, the selection of the fluxes is open to some
criticisms [5] as they constitute the response to interactions
generally expressed in terms of gradients of intensive variables
rather than expressing intrinsic non-equilibrium features of
the systems. Moreover most applications of EIT concern the
linear regime, i.e. linear constitutive relations and evolution
equations of the Cattaneo type. It should nevertheless be

0953-8984/08/025223+11$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/02/025223
mailto:valenti@dmi.unict.it
http://stacks.iop.org/JPhysCM/20/025223


J. Phys.: Condens. Matter 20 (2008) 025223 G Lebon et al

stressed that recently, efforts have been devoted to cover
non-linear situations as encountered for instance in radiative
heat transfer, dusty plasmas and rapid phase transformations
(e.g. [1, 2, 6]).

The aim of the present work is twofold. First, to
replace the classical heat flux variable q by a normalized
expression, taking into account of the constitutive properties
of the heat conductor, like the heat conductivity and the
relaxation time. The explicit form of this normalized variable
will not be arbitrary but imposed by the second principle of
thermodynamics. Other reasons to prefer this new variable to
the heat flux q will be made more explicit in the next section.
The second objective of this paper is to generalize the linear
Cattaneo’s relation by including non-linear contributions.

The procedure may be easily extended to other processes
as matter diffusion or electrical conduction, wherein the
flux of diffusion and the electrical current will be replaced
by new ‘weighted’ fluxes including the diffusion coefficient
and the electrical resistivity respectively. Incorporating the
material properties of the system into the definition of the
non-equilibrium variables offers an interesting alternative and
broadening of the space of state variables. A first step in this
direction can be found in a previous paper [8] by two of the
authors wherein q/λ was selected as variable. In the present
work, we propose a more general formulation which is shown
to be particularly well suited to describe waves and shocks
propagations in heat conductors.

In earlier EIT analyses of rigid heat conductors
(e.g. [1, 2, 7]), the space of state variables was formed by the
union of the classical variable u, the internal energy per unit
volume, and the corresponding energy flux, i.e. the heat flux
vector q. Here, we depart from this attitude by replacing the
set (u,q) by the set (T, c) where T is the temperature and c
the new flux variable. The laws of transformation are given by

u,q → T, c, (2)

with
u = u(T, c2), (3)

q = g(T, c2)c, (4)

wherein c2 = c · c. Expression (4) provides the definition of
the new variable c with the factor g(T, c2) playing the role
of a ‘weighting’ function whose explicit expression will be
determined later on from thermodynamic considerations. It
will be shown that g depends explicitly on the heat conductivity
λ(T ) and the relaxation time τ (T ). The results presented in
this work generalize and unify previous analyses [8–11].

The paper will run as follows. In section 2 are formulated
the non-linear evolution equations of the basic variables: T is
obeying the well-known energy balance but the time evolution
of c is a priori unknown and will therefore be expressed in a
rather general form in terms of the divergence of a flux and a
source term. This evolution equation cannot take any possible
form but must satisfy the restrictions imposed by the second
law of thermodynamics requiring that the rate of entropy
production is a positive definite quantity. The constraints
placed by the second law are discussed in section 3 and detailed
in an appendix by appealing to a particularly elegant technique

due to Liu [12]. Non-linear constitutive relations of the internal
energy, the Helmholtz free energy and the entropy flux are
formulated. In contrast with earlier analysis, these expressions
are not postulated from the outset but are obtained as derived
results. Another important result is that, as a bonus, we obtain
the explicit expression of the weighting function g(T, c2).
Identification of all the phenomenological coefficients, at the
exception of a single one, and information about their sign are
found in section 4. The remaining undetermined coefficient is
obtained from an analysis of propagation of waves (section 5)
and shocks (section 6). Experimental data about shock waves
in NaF and Bi dielectric crystals at low temperature are
presented in section 7. Concluding comments and comparison
with earlier works are found in the final section (section 8).

2. A non-linear model of heat conduction in rigid
bodies

Consider an isotropic rigid heat conductor at rest. In the
classical theory of irreversible processes (e.g. [13]), the
temperature distribution inside the body is obtained by solving
the energy balance

∂t u = −∇ · q, (5)

which is also referred to as the first law of thermodynamics,
by writing (5) it is understood that heat sources are absent. To
close the description, two constitutive equations for u(T ) and
q are needed, the first one is u(T ) = ∫

cve(T )dT with cve the
positive heat capacity at local equilibrium, the second being
usually given by Fourier’s law. The corresponding temperature
equation

cve∂t T = ∇ · (λ∇T ) (6)

is a parabolic partial differential equation with the drawbacks
of predicting propagation of signals with infinite velocity
and to be inapplicable to high frequency processes and short
wavelength phenomena [1, 2].

In the present work, the classical approach [13] will
therefore be abandoned on behalf of EIT. In this formalism,
the heat flux is upgraded to the status of independent variable
and obeys an evolution equation which, in the simplest case, is
of the Cattaneo type (1). Our purpose in the present work is to
go a step further compared to the usual developments of EIT.
First, instead of q,we select a more general variable c defined
by

q = g(T, c2)c, (7)

where g(T, c2) is a kind of weighting function. Selecting
c rather than q is equivalent in a certain sense to a
renormalization procedure. The choice of c is essentially
motivated by the objective to concentrate into one single
variable, a maximum of non-equilibrium transport properties
of the system. Since the factor g is generally not
dimensionless, the new variable c, unlike q, will not have the
dimension of a flux of energy.

In terms of c and in Cartesian coordinates, the first law (5)
takes the form

∂t u = −g,i ci − gci,i . (8)

2



J. Phys.: Condens. Matter 20 (2008) 025223 G Lebon et al

with u a function of T and c2. The second advancement with
respect to previous developments of EIT is that the evolution of
the ‘flux’ variable c is no longer governed by a linear Cattaneo
type equation, but rather by a non-linear expression of the
general form

∂t ci = �i j, j + σ c
i , (9)

the quantity �, a second order tensor, stands for the flux of
c, while the vector σ c represents the source term, summation
convention on repeated indices will be used throughout this
work. To summarize, heat transport is assumed to be
described by the set of variables (T, c) whose time evolution
is expressed by the balance laws (8) and (9). A complete
description requires to close this set of differential equations
by constitutive equations for u, � and σ c in terms of the state
variables T and c. Here, we restrict our analysis to the second
order of approximation in c, meaning that the components �
and σ c will be given by

�i j = D(T )δi j + D0
(

1
2 c2δi j + ci c j

)
, (10)

σ c
i = − 1

τ (T )
ci , (11)

where δi j is the Kronecker’s symbol, D(T ) and τ (T ) are two
scalar functions of T while the coefficient D0 is supposed to
be independent of T , we will see in the forthcoming that this
assumption can be given up without difficulty. At this stage
of the analysis, D0, D and τ are undetermined coefficients.
Expressions (10) and (11) provide the simplest non-linear
modelling generalizing Cattaneo’s equation. Recalling that g
is a function of T and c2, the energy balance equation (8) will
be written as

∂t u + gT ci T,i +2g�ci c j c j,i + gci,i = 0, (12)

with the following notation: ξT = ∂ξ/∂T , ξ� = ∂ξ/∂c2,
ξ(T, c2) being a generic function of both T and c2. After
substitution of (10) and (11) in the evolution equation (9) of
c, one is led to

∂t ci − D′T,i −D0
(
c j c j,i + c j ci, j + ci c j, j

)+ 1

τ
ci = 0, (13)

where we are using the upper prime to denote the derivative
d/dT of a quantity depending only of the temperature.

Equations (12) and (13) constitute the basic relations of
the model, besides the two state variables T and c, they involve
four undetermined functions: g, τ, D and D0 to be expressed
in terms of T and c by means of constitutive equations.
Interesting information about them will be provided by the
second law of thermodynamics and will be examined in the
next section.

3. Restrictions placed by the second law of
thermodynamics

The second law states that the rate of entropy production per
unit volume σ s is a positive definite quantity, it is defined
trough the entropy balance written as

σ s = ∂t s + J s
i,i � 0, (14)

wherein s is the entropy per unit volume and Js the entropy flux
vector, both quantities depending on T and c2. Without loss of
generality, we may assume that Js is collinear with c,

J s
i = γ (T, c2)ci , (15)

where γ (T, c2) is an undetermined function of the variables,
to be specified later on.

Since the temperature is one of the state variables, it is
natural to work with the Helmholtz free energy f = u − T s.
The entropy inequality reads now as

Tσ s = ∂t u − ∂t f − s∂t T + T J s
i,i � 0, (16)

wherein ∂t u is given by the energy balance (12).
The consequences of inequality (16) are established in the

appendix. The most relevant results are the following:

(1) The weighting factor g(T, c2) takes the form

g(T, c2) = λ

τ
+ α(T )c2, (17)

with α(T ) given by

α(T ) = −D0T 2

(
λ

T 2 D′τ

)′
, (18)

λ(T ) is an arbitrary functions of T , which will be
identified later on as the heat conductivity, τ (T ) is
the phenomenological coefficient still introduced in
equation (11).

(2) The constitutive equations of the Helmholtz free energy
f (T, c2) and internal energy u(T, c2) read as

f (T, c2) = fe(T )− λ

2T D′τ
c2, (19)

u(T, c2) = ue(T )+ 1

2
T 2

(
λ

T 2 D′τ

)′
c2, (20)

with subscript e referring to the local equilibrium value,
defined by c = 0.

(3) The entropy flux and entropy production are given by

J s
i = 1

T

(
g + 2D0 f �c2

)
ci , (21)

σ s = 2

T τ
f �c2 � 0. (22)

It is observed that the above expressions depend, among others,
on the quantities λ(T ), τ (T ) and D(T )which did not receive a
physical interpretation so far. This will be achieved in the next
section.

4. Identification of the coefficients λ, τ,D

Within the linear approximation in the fluxes, i.e. D0 = 0, it
is clear from (18) that the coefficient α(T ) vanishes so that the
weighting factor g is equal to λ/τ with the consequence that
c = (τ/λ)q. The evolution equation (13) of c writes then as

∂t

(τ

λ
qi

)
− D′T,i = − 1

λ
qi . (23)

3
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This equation is of the Grioli type [8], and generalizes
Cattaneo’s relation (1), which is obtained by supposing that
the ratio τ/λ is constant.

Since it is required that our model contains the Cattaneo
and Fourier laws as particular cases, it is inferred that λ(T )
and τ (T ) can be identified as the heat conductivity and the
relaxation time of the flux respectively and that moreover

D′ = −1. (24)

Integration with respect to the temperature leads directly to the
expression of D(T ) = −T . These results are important as
they allow us to express the weighting parameter g as well
as the thermodynamic potentials f and u in terms of physical
quantities as the heat conductivity λ(T ) and relaxation time
τ (T ), the results are:

g = λ

τ
− 2D0β(T )c

2, (25)

f = fe(T )+ 1

2

λ

T τ
c2, (26)

u = ue(T )+ β(T )c2, (27)

with

β(T ) = −1

2
T 2

(
λ

T 2τ

)′
. (28)

At this stage, a comment is in form. In the particular
case that λ/(T 2τ ) = constant, it is seen that β = 0, with
the consequences that g = λ/τ while u reduces to its local
equilibrium value. Concomitantly, expression (26) of f writes
as

f = fe(T )+ 1

2

τ

λT
q2, (29)

in agreement with Grad’s kinetic theory [3] and earlier
developments of EIT [1, 2].

The next point is to obtain the expression of the entropy
flux Js. Taking into account of (17) and (19), relation (21)
reads as

J s
i = λ

T τ
ci + D0

(
λ

T τ

)′
c2ci . (30)

In the linear approximation (D0 = 0), expression (30)
boils down to the classical relation Js = q/T [13]. This
observation exhibits the strong connection between dynamics
(i.e. the evolution equation of c) and thermodynamics (i.e. the
expression of the entropy flux). For D0 = 0, the evolution
equation of c is linear, of the Cattaneo type, and the entropy
flux is the local equilibrium one, still linear in the flux. In
the case D0 �= 0, the evolution equation of c is non-linear
in the flux and this property is automatically reflected in the
expression of the entropy flux.

We will end this section by examining the consequences
issued from the positiveness of the entropy production and the
stability properties of equilibrium. According to (22) and (26),
the entropy production can be written as

σ s = λ

(T τ )2
c2 � 0 (31)

and positiveness of σ s requires that the heat conductivity is
positive:

λ > 0. (32)

Moreover, stability properties impose that Helmholtz’s free
energy is minimum in local equilibrium at fixed values of
temperature and volume. It follows then from (26) that λ/τ >
0, which coupled to inequality (32), leads to

τ > 0, (33)

indicating that the relaxation time is indeed positive. Up to
now, we were not able to provide any information about the
last undetermined coefficient D0. It is shown in the next two
sections that useful enlightenments are provided by an analysis
of waves and shocks propagation.

5. Waves propagation and hyperbolicity

In this section, we study the propagation of heat waves in rigid
solids on the basis of the model described by the evolution
equations (12) and (13) for T and c and the constitutive
equation (27) for u. For simplicity, let us assume one-
dimensional waves, T ≡ T (x, t) and c ≡ c(x, t), propagating
along the positive x-direction. Referring to the classical
procedure [14], one considers a smooth surface of equation
ϕ(x, t) = 0 propagating through the body. It is supposed that
across the surface, the state variables T and c are continuous
but their first order derivatives suffer discontinuities defined by

δ =
(
∂

∂ϕ

)

ϕ=0+
−

(
∂

∂ϕ

)

ϕ=0−
. (34)

Making use of the standard transformations

∂t → −vδ, ∂x → δ, (35)

with v the wave speed, one obtains from equations (12)
and (13) a system of two homogeneous algebraic relations for
the discontinuities δT and δc:

(gT c − vuT ) δT +
[
λ

τ
− 2β(v + 3D0c)c

]

δc = 0, (36)

δT − (v + 3D0c) δc = 0. (37)

The linear set (36) and (37) has non-trivial solutions at
the condition that the following characteristic polynomial is
satisfied:

P(v)
.= uT v

2 − (gT − 2β − 3D0uT ) cv

− 3D0 (gT − 2β) c2 − λ

τ
= 0. (38)

In virtue of (38), the system of equations (12) and (13) is
hyperbolic if and only if

�
.= [
(gT − 2β + 3D0uT ) c

]2 + 4
λ

τ
uT > 0, (39)

which implies that uT is positive; in virtue of (27), uT can be
expressed as

uT = cve + β ′c2 > 0. (40)

4
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Defining uT as the heat capacity cv(T, c2) outside equilibrium,
one may therefore conclude that positiveness of cv(T, c2)

implies hyperbolicity. However, in the case that β ′ < 0,
this property is not guaranteed for any value of the variable
c but only for these values smaller that its upper bound which,
according to (40), is equal to

|cmax| =
√

cve

|β ′| . (41)

The slopes of the characteristic lines, i.e. the characteristic
velocities corresponding to (38) are given by

v±(T, c) = (gT − 2β − 3D0uT ) c ± √
�

2uT
. (42)

In equilibrium for which c = 0, the velocities of propagation
are simply

v0
± = ±

√
λ

τcve
. (43)

In principle, measurements of the velocities of propaga-
tion (42) will offer a mean to determine the only left unde-
termined coefficient D0. Unfortunately, to our knowledge, no
experimental data outside equilibrium are available. Although
careful experiments on second sound have been performed in
dielectric crystals at low temperature (<20 K) [15–17], they
concern only equilibrium velocities v0 but these data are of no
help for the determination of the quantity D0 which is absent
from expression (43). A way out is proposed in the next sec-
tion wherein propagation of shock waves in dielectric crystals
is investigated.

6. Shock waves

A possible mean to determine the undetermined coefficient
D0 can be obtained from a shock waves analysis. To be
explicit, consider the propagation of one-dimensional shock
waves travelling in a medium initially in equilibrium with
(T, c) = (T0, 0). In contrast with the previous section, we now
assume a smooth surface propagating through the body across
which the functions T (x, t) and c(x, t) may suffer jumps. We
first establish the Rankine–Hugoniot equations reflecting the
compatibility conditions for the existence of shocks. They are
obtained by making the following substitutions in the evolution
relations (12) and (13):

∂t → −�[], ∂x → [], (44)

wherein � is the shock wave speed, [ξ ] = ξ − ξ0 denoting
the jump between a generic quantity ξ in the perturbed state
(ξ ) behind the shock wavefront and the unperturbed value (ξ0)
ahead of the front. The results of this procedure are

−� [
ue + βc2

] + [(
λ/τ − 2D0βc2

)
c
] = 0, (45)

−� [c] + [
T − (3/2)D0c2

] = 0. (46)

Expressions (45) and (46) constitute an algebraic set of
three scalar unknowns T , c and � in terms of the assigned

unperturbed field (T0, 0). By taking the perturbed temperature
T as the shock parameter and solving with respect to � and c,
one obtains

β(T )�4(T, T0)−
{

β(T )

[
λ(T )

τ (T )
− β(T )(T − T0)

]

× (T − T0)

ue(T )− ue(T0)
+ D0

[
27D0 [ue(T )− ue(T0)]

4

− 9β(T )(T − T0)+ 9λ(T )

2τ (T )

]}

�2(T, T0)

+ D0

{

β(T )(T − T0)

[

8β(T )(T − T0)

− 12λ(T )

τ (T )

]

+ 9λ2(T )

2τ 2(T )

}
(T − T0)

ue(T )− ue(T0)
= 0, (47)

c(T, T0) = −�(T, T0)±
√
�2(T, T0)+ 6D0(T − T0)

3D0
. (48)

In (48), one must select the sign plus when � > 0 and
minus when � < 0 in order to satisfy the condition
limT →T0 c(T, T0) = 0.

It is well known that, among the mathematical solutions
of the Rankine–Hugoniot equations, only the stable ones are
physically admissible. A well accepted stability criterion was
proposed by Lax [18]. Accordingly, the admissible shocks
are those for which the shock velocity is greater than the
unperturbed characteristic velocity v0(T0) ahead of the shock
front and less than the perturbed one v(T0, T ) behind the front.
In our case, by choosing �(T0, T ) > 0, the Lax conditions
read as

0 < v0(T0) < �(T0, T ) < v(T0, T ), lim
�→v0(T0)

T = T0,

(49)
where, the unperturbed velocity is given by expression (43)
evaluated at T = T0, while the expression of the perturbed
characteristic velocity v(T0, T ) is obtained by substitution
of the solution (48) in (42). Moreover, as pointed out by
Ruggeri et al [19], there exists a critical value T0 = Tc of
the unperturbed temperature at which no shock is admissible.
These authors have also demonstrated that the critical value
Tc corresponds to a maximum of the so-called shape function
ψ(T ). These observations are important as they allow us to
establish the link between the undetermined coefficient D0 and
the critical temperature Tc. By following the same procedure
as in [19], it is found that the shape functionψ(T ) is here given
by

ψ(T ) = v3
0cve

T
e− 3

2 D0
∫
v−2

0 dT , (50)

it has stationary points for values of the temperature Tc which
are solution of the following equation:

cv ′e(Tc)

cve(Tc)
+ 3

v′
0(Tc)

v0(Tc)
− 1

Tc
− 3

2v2
0(Tc)

D0 = 0. (51)

Solving (51) with respect to D0 yields

D0 = 2

3

[

v2
0

(

ln
cvev

3
0

T

)′]

T =Tc

, (52)

5
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wherein all the quantities in the right-hand side are available
from experimental data (see next section). Measurements
on dielectric crystals at low temperature have also shown
that the critical temperature Tc can be identified with the
measured value at which second sound is experimentally
detected [15–17].

7. Experimental data and shock waves

Accurate measurements on heat pulse propagations [15–17]
have been carried out in NaF and Bi dielectric crystals at
low temperature (<20 K), under equilibrium conditions with
uniform temperature T0 and c = 0. It was found [20] that the
temperature dependence of the velocity of propagation v0 is
well fitted by an empirical law of the form

v2
0 = 1

A + BT n
, (53)

where A, B and n are constants taking the following values in
SI units:

A = 9.09 × 10−8, B = 2.22 × 10−11,

n = 3.1 for NaF,

A = 9.07 × 10−7, B = 7.58 × 10−9,

n = 3.75 for Bi.

Referring to Debye’s law, at low temperatures, the heat
capacity of dielectric crystals varies with T according to

cve = εT 3, (54)

where ε = 2.3 J m−3 K−4 for NaF and ε = 55 J m−3 K−4

for Bi. In virtue of (43), (53) and (54), the ratio λ/τ is a well
determined function of the temperature expressed by

λ

τ
= εT 3

A + BT n
. (55)

This result is interesting as it provides a mean to calculate
the value of the relaxation time once the heat conductivity is
known.

It should however be stressed that the above data are only
valid in the temperature range in which the second sound is
observed, i. e. 10 K � T � 18.5 K for NaF and 1.4 K � T �
4 K for Bi.

Taking into account expressions (53) and (54), it is a
simple matter to show that there exists only one maximum for
the shape function ψ and, consequently only one single value
of the critical temperature Tc at which no shock is possible.
According to (52), the corresponding value of D0 is

D0 = 4A − (3n − 4)BT n
c

3Tc
(
A + BT n

c

)2
. (56)

The value of Tc corresponding to the linear approximation [8],
i.e. D0 = 0, is given by

T lin
c =

[
4A

((3n − 4)B)

]1/n

(57)

Figure 1. D0 versus Tc in NaF.

and, making use of the above values of n, A and B , it is found
that T lin

c = 13.36 K for NaF and T lin
c = 3.06 K for Bi. The

behaviour of D0 as a function of Tc is displayed in figure 1 in
the case of NaF: it is observed that D0 is positive for Tc < T lin

c
and negative for Tc > T lin

c . A similar curve is obtained for Bi
and will therefore not be reproduced. Now, taking for Tc the
measured value at which the second sound pulse is appearing,
namely Tc = 13 K for NaF [16] and Tc = 3 K for Bi [17],
we are in position to determine the values of the velocities
� and v for fixed values of T0 and to determine the domains
of temperature T where shocks are possible. In figures 2(a)–
(c) are displayed the results corresponding to NaF when the
unperturbed temperatures T0 ahead of the front are respectively
equal, smaller and larger than the critical temperature Tc.
Figure 2(a) shows that the maximum value vc of the velocity,
at which v0 = v = � and T = Tc is vc = 2.54 × 103 m s−1.
It is observed that for T0 < Tc (figure 2(b)), the allowed
temperature range for which the Lax condition is satisfied is
T0 < T < TL where the maximum temperature TL is a function
of T0. It follows that the temperature is increased when passing
from the front to the back side of the shock, such a behaviour
is classical and is referred to as a hot shock. However for
T0 > Tc (see figure 2(c)), the Lax criterion predicts that
shock waves will only propagate when they are produced by
a negative temperature jump T − T0 < 0. Stable shocks
whose temperature behind the shock is lower than ahead of
it are called cold shocks because they cool the body. By
increasing the equilibrium temperature T0 in the case of hot
shocks, we observe (figure 3(a)) that the range of temperature
where shocks are allowed is only slightly diminished. The
same remark remains true by decreasing T0 in the case of cold
shocks (figure 3(b)). Curves similar to these of figures 2 and 3
can also be drawn at other values of the critical temperature
Tc. It is shown that the results are not very sensitive to the
values of Tc. When Tc is increased, the window of admissible

6



J. Phys.: Condens. Matter 20 (2008) 025223 G Lebon et al

Figure 2. � and v versus T in NaF with Tc = 13 K: (a) no shocks (T0 = 13 K); (b) hot shocks (T0 = 11 K < Tc); (c) cold shocks
(T0 = 15 K > Tc).

shocks is slightly decreased (see figures 4(a) and (b) drawn for
Tc = 14 K) while a larger window is displayed by decreasing
Tc. We have also repeated the calculation in the case of
Bi crystals; qualitatively, the results and conclusions remain
unchanged: for T0 = Tc, no shock is admissible, for T0 < Tc,
only hot shocks are possible while for T0 > Tc, cold shocks are
predicted.

The occurrence of cold shocks was still noticed by Müller
and Ruggeri [2] in their analysis of shock waves in heat
conducting monatomic gases, by Ruggeri et al [9, 17] and
Cimmelli and Frishmuth [21] in their study of second sound
in high-purity crystals and also in liquid helium [23, 24] as
commented in the next section. Such a feature is clearly linked
to the introduction of the fluxes as state variables, with the
consequence that temperature looses its privilege to be the
single relevant physical parameter. It may seem paradoxical
that temperature jumps down after the passage of the shock
but this is not an unusual process. Indeed, it is true that for
compressive shocks in ordinary gases at room temperature, the
latter is increased when the gas particles flow across the shock,

but this is no longer verified for rarefaction flows characterized
by a negative jump of temperatures. This is interesting because
it allows us to compare the cold shock with a kind of thermal
rarefaction. Moreover, it is noted that, in the case T0 >

Tc, entropy is decreased when passing from the front to the
back side of the cold shock. If it is admitted that entropy
is a measure of disorder, we may understand that occurrence
of cold shocks is accompanied by less disorder, whence a
lowering of temperature.

8. Concluding comments

The objectives of this work were twofold: first, to revisit
extended irreversible thermodynamics (EIT); second, to
generalize the linear classical Cattaneo equation. The most
important results are embodied in equations (13), (25) and (27).

In the previous versions of EIT (e.g. [1, 2, 7]), the non-
equilibrium state variables are identified with the dissipative
parts of the physical fluxes of mass, momentum and energy.
In the present paper, we show that the space of the extra state

7
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Figure 3. � and v versus T in NaF with Tc = 13 K: (a) hot shocks (T0 = 12.5 K < Tc); (b) cold shocks (T0 = 13.5 K > Tc). 0

Figure 4. � and v versus T in NaF with Tc = 14 K: (a) hot shocks (T0 = 11 K < Tc); (b) cold shocks (T0 = 15 K > Tc).

variables is not restricted of the physical fluxes, we propose
another choice by using as state variables the dissipative
fluxes balanced by a weighting coefficient instead of the fluxes
themselves. This is motivated by the fact that the question
has been raised whether or not the fluxes can be regarded
as the most appropriate state variables in non-equilibrium
situations. Indeed, the fluxes represent essentially the response
of a system to external solicitations through the boundaries.
To award a quantity the status of state variables requires that
it be expressed in terms of intrinsic macroscopic properties
of the material. This is precisely what is achieved in the
present paper wherein the non-equilibrium variable takes the
form of a heat flux with a factor depending explicitly on the
specific properties of the material, like heat conductivity λ and
relaxation time τ . It is important to stress that this ‘weighting’
function is not arbitrary but is determined a posteriori, as
a consequence of the constraints placed by the second law

of thermodynamics. More explicitly, in the problem of heat
conduction in rigid bodies, we have selected as state variables
the temperature T , which is rather natural and an extra variable
c related to the heat flux vector q by

q = g(T, c2)c, (58)

with the ‘weighting’ factor given by

g = λ

τ
+ D0T 2

(
λ

T 2τ

)′
c2. (59)

D0 is a constant but the ratio λ and τ are allowed to be
temperature dependent. In equilibrium situations for which
q = 0, one has similarly c = 0. For constant values of
λ/(T 2τ ) or in the linear approximation D0 = 0, the quantity
c reduces simply to (τ/λ)q. Since τ is generally very small,
of the order of 10−12–10−8 s, the new variable c is a small

8
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parameter in terms of which higher order expansions can be
made. This is useful because it provides a hierarchy in the
evolution and constitutive equations with the possibility to cut
the developments according to a fixed degree of accurateness.

A further comment about the solution of the differential
equation (A.12), namely ∂2g/∂(c2)2 = 0 is in form. Its
solution (A.13) is written in terms of a ‘constant’ of integration
given here by λ/τ . The expression of this ‘constant’ is dictated
by the physics of the problem and remains to a certain point
arbitrary. For instance, in the present problem, one could as
well have selected the heat conductivity λ itself or the ratio
λ/(T nτ ) (n = ±1 or ±2) or k/τ , with k the heat diffusivity.
In other problems, like matter diffusion, electrical conduction
or in presence of a viscous stress tensor, good candidates will
be the diffusion coefficient, the electrical resistivity, or the
dynamic viscosity respectively.

Another attempt to prefer state variables different from the
physical fluxes can be found in a work by Velasco and Garcia-
Colin [22], wherein the moments of the Grad distribution
function [3] were assigned this role. Restricting their analysis
to linear evolution equations, Velasco and Garcia-Colin found
that in the case of dilute monatomic gases, the relevant flux
variable takes the form 5( kB

mT )
1/2 τ

λ
q, which is clearly similar to

the quantity c introduced in the present approach, m designates
the mass of the particles and kB the Boltzmann constant.

In short, the reasons to prefer c rather than q as variable
are the following:

(i) Because it depends explicitly on the material properties λ
and τ , the quantity c is reflecting the material properties
of the system, which would not have been the case by
selecting simply the variable q.

(ii) The new variable c being proportional to the relaxation
time τ , it is a small parameter and therefore it may be very
helpful in the determination of the closure of non-linear
series expansions.

(iii) Its expression is related to the second moments of the
distribution function as introduced by Grad [3].

(iv) The final form of the expression of g is not arbitrary
but is obtained by referring to the second law of
thermodynamics.

(v) The price to be paid by selecting c as variable is the lack
of clear physical meaning compared to q. However, it is
worth to stress that each of the individual factors, namely
λ, τ and q, defining c has per se a clear significance.
The same situation occurs in other branches of physics,
like in rheology and solid mechanics, where the basic
variables are sometimes also selected as combinations of
well-defined physical quantities.

The second purpose of this work was to go beyond
Cattaneo’s linear law. Instead, it is assumed that propagation
of second sound is governed by the more general non-linear
time evolution equation (13). Such a relation, when coupled to
the energy balance, is well suited for modelling high frequency
phenomena, like waves and shocks propagations occurring at
low temperatures in dielectric crystals for which Cattaneo’s
approach fails. Equation (13) involves two undetermined
coefficients D(T ), assumed to be temperature dependent and

D0, a constant. The quantity D(T ) is shown to be equal to −T
while D0 is given by (52).

As illustrative example, propagation of shocks in NaF
and Bi dielectric crystals at low temperature is investigated.
Is should also be noted that letting D0 to depend on the
temperature will not raise fundamental difficulties. It will only
result in a supplementary term of the form D′

0(
1
2 c2δi j+ci c j)T,i

in (13) with the consequence that, relation (A.18) of α(T )
will contain an extra contribution in D′

0T f �. Derivation of the
corresponding expressions of the thermodynamic potentials f ,
u and the weighting factor g is rather straightforward.

Extension to rigid bodies in motion with a velocity v
will not raise fundamental problems. Now the space of state
variables will contain, besides T and c, the velocity v obeying
the momentum balance equation. The consequences are that
the partial time derivative in the evolution equations (5) and (9)
will be replaced by the material time derivative and that an
extra Lagrange multiplier must be introduced in the entropy
inequality (A.2) to account for the constraints placed by the
momentum equation. Most of the conclusions drawn from the
entropy inequality in appendix remain valid as the new variable
v is essentially a kinematical one.

Similarities and differences with the propagation of
second sound in superfluid helium He II are also worth to
be underlined. In Landau’s two-fluid model [23–26], He II
is viewed as a mixture of two coexisting fluids: the normal
fluid with a non-zero viscosity and the superfluid with zero
viscosity and zero entropy. In the thermodynamic description
of He II [23, 24], the space of state functions is not restricted
to the classical total mass density ρ and temperature T , but
contains in addition a flux variable related to the relative
velocity vn − vs between the normal and super fluids. This
shows that thermodynamics underlying the two-fluid model
is based on a generalized space concept which is closer
to EIT than classical non-equilibrium thermodynamics [13].
More striking similarities between our approach and Landau’s
model are observed in the study of shock waves. Indeed,
it was shown [23, 24] that the formation of shock waves in

He II is strongly influenced by the coefficient (ln cv ev
3
0

T )′ in
the expression of the velocity of propagation of temperature
discontinuity. Now going back to the definition (52) of our
corresponding coefficient D0, one notices a strong similarity.
Like D0, the above coefficient of Landau’s theory changes sign
with temperature and likewise, the formation of rarefaction
(or cold) shocks occurs for negative values of this coefficient.
Although the foundations underlying Landau’s model are
rather different from ours, it is interesting to note that both
descriptions lead to similar conclusions.

The present model contains as particular cases the laws
of Fourier and Cattaneo. Indeed, evolution equation (13)
boils down to Cattaneo’s law in the linear approximation
(no quadratic terms in the fluxes) and for a constant heat
conductivity and relaxation time. Our approach goes also
beyond previous contributions by Ruggeri et al [10, 11, 19]
and Coleman and Newman [20]. In this latter work, the
authors generalize Cattaneo’s formulation by allowing the
heat conductivity and the relaxation time to be temperature
dependent but they assume a linear evolution equation for
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the heat flux. In our notation, this means that Coleman and
Newmann’s formalism corresponds to β �= 0 but D0 = 0. In
Ruggeri et al [10, 11, 19], the internal energy is forced to be
only temperature dependent while the evolution of the flux of
heat is governed by an equation of the form

∂t(εq)+ ∇ν = ν ′

λ
q, (60)

wherein the factors ε(T ) and ν(T ) are unspecified quantities
to be given by constitutive relations. In our description, the
equivalent expression is equation (9) with the main difference
that the scalar ν(T ) is replaced by a tensor of rank two�(T, c)
allowed to depend on both T and c. To summarize, Ruggeri
et al approach amounts to set β = 0 and D0 = 0 in the present
analysis.

Let us finally briefly comment about the expression of
the entropy flux: the latter is no longer given by q/T but is
more general as exhibited by relation (21). Since this result is
compatible with the positive definite entropy production (22),
it appears that the second law (14), referred to as the
Clausius–Duhem inequality in the rational thermodynamics
terminology [27], can be satisfied for non-classical expressions
of the entropy flux, in contradiction with one of the statements
of rational thermodynamics.
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Appendix. Consequences of the entropy inequality

Inequality (16) expressing the positiveness of the entropy
production can be rewritten in the more explicit form

Tσ s = −gT ci T,i −2g�ci c j c j,i − gci,i − ∂t f

− s∂t T + T
(
γT ci T,i +2γ �ci c j c j,i + γ ci,i

)
� 0, (A.1)

after use is made of the energy balance (12) and expression (15)
of Js . Note however that inequality (A.1) does not hold for any
value of the variables T and c but only for those values which
are solutions of the balance equation (13), the energy balance
being automatically satisfied. This means that we can consider
relation (13) as a constraint for the entropy inequality to
hold. A way to take this constraint into account was proposed
by Liu [12]: he demonstrated that the entropy inequality
becomes completely arbitrary at the condition to complement
it by the evolution equation of c affected by a multiplying
factor Λ, generally a function of T and c2. This factor is
called a Lagrange multiplier in analogy with the extremization
problem of mathematics in presence of constraints. After

introducing the Lagrange’s multiplier, the compatibility of
entropy inequality with (13) yields the following inequality
which holds for any value of the field variables:

Tσ s +�i

[
1

τ
ci + ∂t ci − D′T,i

− D0
(
c j c j,i + c j ci, j + ci c j, j

)
]

� 0. (A.2)

Substituting Tσ s by expression (A.1) and regrouping the terms
in ∂t T , ∂t ci , T,i and c j,i , results in

1

τ
�i ci − ( fT + s) ∂t T + (

�i − 2 f �ci
)
∂t ci

− (
�i D′ + gT ci − T γT ci

)
T,i

+ [
(T γ − g − D0�i ci ) δi j

+ 2
(
Tγ �ci − g�ci − D0�i

)
c j

]
c j,i � 0, (A.3)

which must be satisfied for all fields T, ci and, in particular for
arbitrary values of their derivatives. Since inequality (A.3) is
linear in these derivatives, it will be violated unless the factors
of ∂t T , ∂t ci , T,i and c j,i are set equal to zero. It follows that
the next relations must be fulfilled:

s = − fT , (A.4)

�i = 2 f �ci , (A.5)

γ = 1

T
g + 2D0

T
f �c2, (A.6)

γT = 1

T
gT + 2D′

T
f �, (A.7)

γ � = 1

T
g� + 2D0

T
f � (A.8)

while the entropy production reduces to

Tσ s = 2

τ
f �c2 � 0. (A.9)

Differentiating (A.6) with respect to c2 and comparing
with (A.8) yields the important result

f �� = 0, (A.10)

which means that the Helmholtz’s free energy is linear in c2.
Moreover by identifying the derivative of (A.6) with respect to
T with expression (A.7), it is found that

2T D′ f � = 2D0
(
T f �T − f �

)
c2 − g, (A.11)

and, after differentiation twice with respect of c2, one obtains

g�� = 0. (A.12)
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This result allows us to cast g(T, c2) in the general form

g = λ(T )

τ (T )
+ α(T )c2, (A.13)

wherein λ(T ) and α(T ) are arbitrary functions of T , τ (T )
is the relaxation time introduced in equation (11). The next
step consists in taking advantage of the invertibility condition
(γT )

� = (γ �)T and the result α(T ) = g�, these operations lead
to

α = 2D0
(
T f �T − f �

)
. (A.14)

Let us finally establish the constitutive equations of the
Helmholtz’s free energy f (T, c2) and internal energy u(T, c2).
After substitution of (A.13) and (A.14) in (A.11), it is easily
checked that

f � = − λ

2T D′τ
, (A.15)

and, after integration with respect to c2,

f = fe(T )− λ

2T D′τ
c2, (A.16)

where fe(T ) designates Helmholtz’s energy at local equilib-
rium which, as it should, corresponds to c = 0. Determina-
tion of the expression of the internal energy is straightforward.
Having in mind the definition u = f −T fT , it is directly found
from (A.16) that

u(T, c2) = ue(T )+ 1

2
T 2

(
λ

T 2 D′τ

)′
c2, (A.17)

with ue(T ) the local equilibrium internal energy. Similarly,
after substitution of (A.16) in (A.14), one obtains the functional
dependence of α(T ), namely

α = −D0T 2

(
λ

T 2 D′τ

)′
. (A.18)
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